

Université Côte d'Azur (Nice) Master 2 internship offer Duration: 5/6 months

Title: Design, fabrication and characterization of metasurfaces for miniaturized endoscopes

Endoscopy imaging techniques have attracted much attention thanks to their capability to non-invasively image deep in the living tissues surpassing the conventional imaging techniques limited by absorption and scattering. Their recent miniaturization allowed their application not only for probing hollow organs but also for dense living media such as in the brain [1]. For example, thanks to their ability to perform without additional imaging optical lenses, multicore fibers are very promising for further miniaturization and flexibility of endoscopic systems [2]. Although good performances have been achieved on miniaturized endoscopic systems, there is still non-solved issues that limit their use for clinical application. Most of these problems are related to the beam shaping through the fiber in order to focus and scan the light at the distal end of the fiber. Currently, bulky systems including scanning mirrors and SLM (spatial light modulator) are used.

Our aim to explore the possibility of integrating metasurfaces inside the endoscope in order to improve its performances. Metasurfaces are miniature, flat optical components made of arrangements of scattering objects (meta-atoms) of subwavelength size and periodicity capable to control the properties of the reflected and transmitted light in amplitude, phase, and polarization [3, 4]. During the last decade, metasurfaces have been studied and used for various applications. However, despite the various advantages of metasurfaces, their implementation in miniaturized endoscopes is still scarce.

The master student will work on the design, fabrication, and characterization of a metasurface. For the design, she/he will use numerical tools based on full-wave solvers such as Lumerical FDTD. She/he will be trained in nanofabrication using the cleanroom facilities. The fabricated metasurface will be characterized using SEM for morphology and optical setups available in the lab. In addition to the supervisor and collaborators, she/he will interact with a PhD student working on a related topic.

This master internship may be followed by a PhD starting in September 2026 with already available funding.

This project is in close collaboration between three laboratories: CRHEA _ Nice (Dr. Samira KHADIR) for metasurface development, Institut Fresnel _ Marseille (Dr. Hervé Rigneault) for the development of the endoscope and imaging application, and PhLAM _Lille (Dr. Esben Andresen) for design and optical fiber development.

Contacts:

Samira Khadir (samira.khadir@crhea.cnrs.fr)

References:

- 1. A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, "High-resolution multimodal flexible coherent Raman endoscope," Light Sci. Appl. 7, 10 (2018).
- 2. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, "Two-photon lensless endoscope," Opt. Express 21, 20713 (2013).
- 3. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, "Recent advances in planar optics: from plasmonic to dielectric metasurfaces," Optica 4, 139-152 (2017).
- 4. S. Khadir, D. Andrén, R. Verre, Q. Song, S. Monneret, P. Genevet, M. Käll, G. Baffou "Metasurface Optical Characterization Using Quadriwave Lateral Shearing Interferometry" ACS Photonics, 8, 603 (2020)